leetcode_883
On a N N grid, we place some 1 1 * 1 cubes that are axis-aligned with the x, y, and z axes.
Each value v = grid[i][j] represents a tower of v cubes placed on top of grid cell (i, j).
Now we view the projection of these cubes onto the xy, yz, and zx planes.
A projection is like a shadow, that maps our 3 dimensional figure to a 2 dimensional plane.
Here, we are viewing the "shadow" when looking at the cubes from the top, the front, and the side.
Return the total area of all three projections.
Example 1:
Input: [[2]] Output: 5 Example 2:
Input: [[1,2],[3,4]] Output: 17 Explanation: Here are the three projections ("shadows") of the shape made with each axis-aligned plane.
Example 3:
Input: [[1,0],[0,2]] Output: 8 Example 4:
Input: [[1,1,1],[1,0,1],[1,1,1]] Output: 14 Example 5:
Input: [[2,2,2],[2,1,2],[2,2,2]] Output: 21
Note:
1 <= grid.length = grid[0].length <= 50 0 <= grid[i][j] <= 50
Solutions
straight forward O(mn) S(m + n)
class Solution {
public:
int projectionArea(vector<vector<int>>& grid) {
int m = grid.size(), n = grid.size(), top = 0;
vector<int> front(n), side(m);
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++) {
if (grid[i][j]) {
top++;
front[j] = max(front[j], grid[i][j]);
side[i] = max(side[i], grid[i][j]);
}
}
return top
+ accumulate(front.begin(), front.end(), 0)
+ accumulate(side.begin(), side.end(), 0);
}
};
or
class Solution {
public:
int projectionArea(vector<vector<int>>& grid) {
int n = grid.size();
int res = 0;
for (int i = 0; i < n; i++) {
int maxrow = 0, maxcol = 0;
for (int j = 0; j < n; j++) {
// since we are reusing i, j, can not wrap these three lines in a if statement.
res += grid[i][j] > 0;
maxrow = max(maxrow, grid[i][j]);
maxcol = max(maxcol, grid[j][i]);
}
res += maxrow + maxcol;
}
return res;
}
};
Last updated
Was this helpful?