leetcode_882
Starting with an undirected graph (the "original graph") with nodes from 0 to N-1, subdivisions are made to some of the edges.
The graph is given as follows: edges[k] is a list of integer pairs (i, j, n) such that (i, j) is an edge of the original graph,
and n is the total number of new nodes on that edge.
Then, the edge (i, j) is deleted from the original graph, n new nodes (x_1, x_2, ..., x_n) are added to the original graph,
and n+1 new edges (i, x1), (x_1, x_2), (x_2, x_3), ..., (x{n-1}, x_n), (x_n, j) are added to the original graph.
Now, you start at node 0 from the original graph, and in each move, you travel along one edge.
Return how many nodes you can reach in at most M moves.
Example 1:
Input: edges = [[0,1,10],[0,2,1],[1,2,2]], M = 6, N = 3
Output: 13
Explanation:
The nodes that are reachable in the final graph after M = 6 moves are indicated below.
Example 2:
Input: edges = [[0,1,4],[1,2,6],[0,2,8],[1,3,1]], M = 10, N = 4
Output: 23Note:
0 <= edges.length <= 10000
0 <= edges[i][0] < edges[i][1] < N
There does not exist any i != j for which edges[i][0] == edges[j][0] and edges[i][1] == edges[j][1].
The original graph has no parallel edges.
0 <= edges[i][2] <= 10000
0 <= M <= 10^9
1 <= N <= 3000
A reachable node is a node that can be travelled to using at most M moves starting from node 0.
Solutions
Treat the number of nodes within each edge as weights.
dijkstra method
curwdenotes moved steps from the initial node.The result is composed of two pairts, one is the number of real nodes traversed using shortest paths algorithm, another is the extra steps can be made along the edge within the constraint of
M, each edge may be recorded two times from both sides.
or
Last updated
Was this helpful?