面试题46
给定一个数字,我们按照如下规则把它翻译为字符串:0 翻译成 “a” ,1 翻译成 “b”,……,11 翻译成 “l”,……,25 翻译成 “z”。一个数字可能有多个翻译。请编程实现一个函数,用来计算一个数字有多少种不同的翻译方法。
示例 1:
输入: 12258
输出: 5
解释: 12258有5种不同的翻译,分别是"bccfi", "bwfi", "bczi", "mcfi"和"mzi"
提示:
0 <= num < 231
Solutions
dfs
class Solution {
public:
int transnum(const string & s, int st) {
if (st > s.size())
return 0;
if (st == s.size())
return 1;
int res = 0;
res += transnum(s, st + 1);
if (s[st] != '0' && stoi(s.substr(st, 2)) <= 25)
res += transnum(s, st + 2);
return res;
}
int translateNum(int num) {
return transnum(to_string(num), 0);
}
};
recursion with memoization
class Solution {
public:
vector<int> memo;
int solve(string & s, int st) {
if (st < 0)
return 0;
if (memo[st] != -1)
return memo[st];
memo[st] = 0;
memo[st] += solve(s, st - 1);
if (st - 2 >= 0 && s[st - 2] != '0' && stoi(s.substr(st - 2, 2)) <= 25)
memo[st] += solve(s, st - 2);
return memo[st];
}
int translateNum(int num) {
string s = to_string(num);
memo = vector<int>(s.size() + 1, -1);
memo[0] = 1;
return solve(s, s.size());
}
};
dynamic programming
class Solution {
public:
int translateNum(int num) {
string s = to_string(num);
vector<int> dp(s.size() + 1);
dp[0] = 1;
for (int i = 1; i < dp.size(); i++) {
dp[i] += dp[i - 1];
if (i >= 2 && s[i - 2] != '0' && stoi(s.substr(i - 2, 2)) <= 25)
dp[i] += dp[i - 2];
}
return dp[s.size()];
}
};
Or
class Solution {
public:
int translateNum(int num) {
string s = to_string(num);
int pprev = 0, prev = 1;
for (int i = 1; i < s.size() + 1; i++) {
int cur = 0;
cur += prev;
if (i >= 2 && s[i - 2] != '0' && stoi(s.substr(i - 2, 2)) <= 25)
cur += pprev;
pprev = prev;
prev = cur;
}
return prev;
}
};
Last updated
Was this helpful?