面试题60
把n个骰子扔在地上,所有骰子朝上一面的点数之和为s。输入n,打印出s的所有可能的值出现的概率。
你需要用一个浮点数数组返回答案,其中第 i 个元素代表这 n 个骰子所能掷出的点数集合中第 i 小的那个的概率。
示例 1:
输入: 1
输出: [0.16667,0.16667,0.16667,0.16667,0.16667,0.16667]
示例 2:
输入: 2
输出: [0.02778,0.05556,0.08333,0.11111,0.13889,0.16667,0.13889,0.11111,0.08333,0.05556,0.02778]
限制:
1 <= n <= 11
Solutions
dynamic programming
Count the number of cases with sum equals to values(sums) ranging from
n
ton * 6
after rolledn
times.Then the propability of each
value(sum)
iscount * pow(1.0/6, n)
. ie: totoal number of combinations is6^n
dp[n][i]
represents the number of cases with sum equals toi
after we rolledn
times.Then
dp[n + 1][i] = dp[n][i - 6](current dice is 6) + dp[n][i - 5](current dice is 5) + .... dp[n][i - 1]
.
class Solution {
public:
vector<double> twoSum(int n) {
vector<int> dp(n * 6 + 1, 0);
for (int i = 1; i <= 6; i++)
dp[i] = 1;
for (int i = 2; i <= n; i++) {
// traverse backwards to avoid overwrite data in dp table of the last time
for (int sum = i * 6; sum >= i; sum--) {
// Caution, must use a temporal varaible
int cnt = 0;
for (int cur = 1; cur <= 6; cur++) {
int prev = sum - cur;
if (prev < i - 1 || prev > (i - 1) * 6)
continue;
cnt += dp[prev];
}
dp[sum] = cnt;
}
}
vector<double> res;
double base = pow(1.0 / 6, n);
for (int sum = n; sum <= n * 6; sum++)
res.push_back(dp[sum] * base);
return res;
}
};
Last updated
Was this helpful?