面试题13

地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 37],因为3+5+3+8=19。请问该机器人能够到达多少个格子?

示例 1:

输入:m = 2, n = 3, k = 1
输出:3

示例 1:

输入:m = 3, n = 1, k = 0
输出:1

提示:

  • 1 <= n,m <= 100

  • 0 <= k <= 20

Solutions

  1. dfs

class Solution {
public:
    int m, n;
    vector<bool> visited;
    inline int sum(int n) {
        int s = 0;
        while (n) {
            s += n % 10; n /= 10;
        }
        return s;
    }
    int dfs(int i, int j, int k) {
        if (i >= m || j >= n || visited[i * n + j] || sum(i) + sum(j) > k) return 0;
        visited[i * n + j] = true;
        return dfs(i + 1, j, k)
            +  dfs(i, j + 1, k)
            +  1;
    }
    int movingCount(int m, int n, int k) {
        this->m = m; this->n = n;
        visited = vector<bool>(m * n);
        return dfs(0, 0, k);
    }
};
  1. bfs

class Solution {
public:
    inline int sum(int n) {
        int s = 0;
        while (n) {
            s += n % 10; n /= 10;
        }
        return s;
    }
    int movingCount(int m, int n, int k) {
        vector<bool> visited(m * n);
        queue<pair<int, int>> q;
        q.push({0, 0});

        int num = 0, i, j;
        while (q.size()) {
            auto [x, y] = q.front(); q.pop();
            num++;
            i = x + 1, j = y;
            if (!(i >= m || j >= n || visited[i * n + j] 
                || sum(i) + sum(j) > k)) {
                visited[i * n + j] = true;
                q.push({i, j});
            }
            i = x, j = y + 1;
            if (!(i >= m || j >= n || visited[i * n + j] 
                || sum(i) + sum(j) > k)) {
                visited[i * n + j] = true;
                q.push({i, j});
            }
        }

        return num;
    }
};

Last updated

Was this helpful?