Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
The cache is initialized with a positive capacity.
Follow up:
Could you do both operations in O(1) time complexity?
class LRUCache {
private:
int size;
list<int> lru;
unordered_map<int, list<int>::iterator> mp;
unordered_map<int, int> kv;
public:
LRUCache(int capacity) : size(capacity) {}
int get(int key) {
if (!kv.count(key))
return -1;
else {
update(key);
return kv[key];
}
}
void put(int key, int value) {
if (!kv.count(key) && kv.size() == size) evict();
update(key);
kv[key] = value;
}
void update(int key) {
if (kv.count(key)) lru.erase(mp[key]);
lru.push_front(key);
mp[key] = lru.begin();
}
void evict() {
kv.erase(lru.back());
mp.erase(lru.back());
lru.pop_back();
}
};
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache* obj = new LRUCache(capacity);
* int param_1 = obj->get(key);
* obj->put(key,value);
*/
class LRUCache {
public:
using kv = pair<int, int>;
int cap = 0;
list<kv> lru;
unordered_map<int, list<kv>::iterator> m;
LRUCache(int capacity) : cap(capacity) {
}
int get(int key) {
if (!m.count(key))
return -1;
else {
update(key, m[key]->second);
return m[key]->second;
}
}
void put(int key, int value) {
if (lru.size() >= cap && !m.count(key))
evict();
update(key, value);
}
void evict() {
if (lru.size()) {
m.erase(lru.back().first);
lru.pop_back();
}
}
void update(int key, int value) {
if (m.count(key))
lru.erase(m[key]);
lru.emplace_front(key, value);
m[key] = lru.begin();
}
};
template <typename K, typename V>
struct List {
using node = List<K, V>;
K key;
V val;
node * prev;
node * next;
List(K k = K(0), V v = V(0), node * prev = NULL, node * next = NULL)
: key(k), val(v), prev(prev), next(next) {}
};
typedef List<int, int> Node;
class LRUCache {
private:
int size;
Node * front;
Node * back;
unordered_map<int, Node *> mp;
public:
LRUCache(int capacity) : size(capacity) {
front = new Node(); back = new Node();
front->next = back; back->prev = front;
}
int get(int key) {
if (!mp.count(key))
return -1;
else {
update(key, mp[key]->val);
return mp[key]->val;
}
}
void put(int key, int value) {
if (mp.size() == size && !mp.count(key)) {
// remove the last node
Node * node = back->prev;
node->prev->next = node->next;
node->next->prev = node->prev;
mp.erase(node->key);
delete(node);
}
update(key, value);
}
void update(int key, int value) {
Node * head;
if (mp.count(key)) {
// remove from the list
head = mp[key];
head->prev->next = head->next;
head->next->prev = head->prev;
head->val = value;
head->next = front->next;
head->prev = front;
} else
head = new Node(key, value, front, front->next);
// insert after the front node.
front->next->prev = head;
front->next = head;
mp[key] = head;
}
~LRUCache() { for (auto & p : mp) delete p.second; }
};
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache* obj = new LRUCache(capacity);
* int param_1 = obj->get(key);
* obj->put(key,value);
*/
from collections import OrderedDict
class LRUCache(OrderedDict):
def __init__(self, capacity: int):
self.size = capacity
def get(self, key: int) -> int:
if key not in self:
return -1
else:
# move this item to the end
self.move_to_end(key)
return self[key]
def put(self, key: int, value: int) -> None:
if len(self) == self.size and key not in self:
# delete the first element
self.popitem(last=False)
if key in self:
# move to end
self.move_to_end(key)
# in orderedDict, new key is automatically append to the end
self[key] = value
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)