You have n binary tree nodes numbered from 0 to n - 1 where node i has two children leftChild[i] and rightChild[i], return true if and only if all the given nodes form exactly one valid binary tree.
If node i has no left child then leftChild[i] will equal -1, similarly for the right child.
Note that the nodes have no values and that we only use the node numbers in this problem.
Example 1:
Input: n = 4, leftChild = [1,-1,3,-1], rightChild = [2,-1,-1,-1]
Output: true
Example 2:
Input: n = 4, leftChild = [1,-1,3,-1], rightChild = [2,3,-1,-1]
Output: false
Example 3:
Input: n = 2, leftChild = [1,0], rightChild = [-1,-1]
Output: false
Example 4:
Input: n = 6, leftChild = [1,-1,-1,4,-1,-1], rightChild = [2,-1,-1,5,-1,-1]
Output: false
Constraints:
1 <= n <= 10^4
leftChild.length == rightChild.length == n
-1 <= leftChild[i], rightChild[i] <= n - 1
Solutions
Union Find
numedges == n - 1
no cycle
all nodes are connected(one community).
struct UnionFind {
vector<int> nodes;
UnionFind(int n) : nodes(n) {
iota(nodes.begin(), nodes.end(), 0);
}
int find(int node) {
return nodes[node] == node ? node : (nodes[node] = find(nodes[node]));
}
bool merge(int node1, int node2) {
int f1 = find(node1), f2 = find(node2);
if (f1 == f2) return false;
nodes[f1] = f2;
return true;
}
};
class Solution {
public:
bool validateBinaryTreeNodes(int n, vector<int>& leftChild, vector<int>& rightChild) {
vector<int> indegree(n);
UnionFind uf(n);
int com = n;
for (int i = 0; i < n; i++) {
if (leftChild[i] != -1) {
indegree[leftChild[i]]++;
if (uf.merge(i, leftChild[i]))
com--;
else return false;
}
if (rightChild[i] != -1) {
indegree[rightChild[i]]++;
if (uf.merge(i, rightChild[i]))
com--;
else return false;
}
}
return com == 1;
}
};
another method
class Solution {
public:
bool validateBinaryTreeNodes(int n, vector<int>& leftChild, vector<int>& rightChild) {
int edge = 0;
vector<int> indeg(n), outdeg(n);
for (int i = 0; i < n; i++) {
if (leftChild[i] != -1) {
edge++; outdeg[i]++;
indeg[leftChild[i]]++;
}
if (rightChild[i] != -1) {
edge++; outdeg[i]++;
indeg[rightChild[i]]++;
}
}
// check ig edge == n - 1
if (edge != n - 1) return false;
int root = -1;
for (int i = 0; i < n; i++) {
// there are at most 1 root node
if (indeg[i] == 0) {
if (root != -1) return false;
root = i;
}
// no nodes has more than 1 indgree
else if (indeg[i] != 1)
return false;
}
// must has one root, and outdegree of root node must >= 0;
// except sinleone case
return root != -1 && (n == 1 || outdeg[root]);
}
};